大家好,很开心能够和大家一起交流时序数据库的相关的内容首先还是简单自我介绍一下,我是 孙金城,花名 金竹。
我是2011年加入阿里,在2016年之前一直做公司内部的研发工作,包括阿里郎,Blink等平台。
从2016年到现在我一直重心在开源建设上面,包括ApacheFlink/ApacheBeam/ApacheIoTDB,在这个过程中也得到了开源的一些肯定,目前是BeamCommitter,ApacheFlink和ApacheIOTDB的PMC,也是Apache Member,目前全球华人大概有30+的ApacheMember,当然,随着开源的越来越热,国内每年参与开源建设的同学也在逐渐的在增加。
那么2020之后会有怎样的规划呢?本着但做好事,莫问前程的心态,会多多在订阅号中记录我在流计算和IoT方面的认知。
最终努力做到走进阿里/踏入开源,成为最好的自己.那么为什么一直做流计算会慢慢选择了解IoT相关领域呢?因为在马老师看来“5G时代,加速的不仅仅是通讯行业,而是更多的促进物联网(IOT)领域的发展。
IoT将是一个新的浪潮。
那么我参与IOT领域的切入点是什么呢,就是从了解时序数据库 进行着陆的...如图,这不是一篇经验分享,而是一个学习过程分享了解时序数据库最先想到的是: 了解一下时序数据库的现状及发展趋势,那么这个数据的权威性,大家应该有所共识,在db-engines网站的排名应该很客观的。
如图,从2018年开始,TimeSeriesDBMS的关注度就持续迅猛的增长。
其实不仅仅db-engines网站有这样的数据,Gartner也给出了预见性的判断。
我们一起看一下...在2019年"赋权的边缘" 就成为了十大战略性技术趋势之一,边缘由物联网驱动,需要使处理计算更接近端而不是集中式的云服务器。
当然早在2018年 "云向边缘计算挺进" 的趋势就已经非常明显。
边缘设备的信息的收集/存储和计算需求与日俱增,一直到目前2020年,更多的计算和存储能力都逐渐下沉到设备端,云边端一体将是今后几年持续的焦点。
设备数据具备时序性,而作为物联网领域具备存储和计算能力的产品就是时序数据库。
那么目前业界时序数据库的阵营是怎样的状况呢?我们继续看一下...同样出自DB-Engines的排名信息,目前有几十种(大概34种)时序数据库,大家熟知的InfluxDB自2016年以来稳稳的位居榜首,随着2018年IoT领域的崛起,InfluxDB的热度也持续飙升,稳稳地龙头位置,那么InfluxDB为啥如此受到时序数据存储技术的青睐呢?我们接下来就会和大家细致进行分析...其实时序数据库早在1999年就已经有RRDtool,全称RoundRobin Database。
新数据会自动覆盖老数据,也就是考虑了时序数据的时效性,在2008年又出现了Graphite,Graphite是一个用于采集网站实时信息,并进行统计的开源项目,可用于采集多种网站服务运行状态信息。
随后就是大家熟知的OpenTSDB,InfluxDB,还有feacebook的内存版时序数据库,再有就是非常著名的用于监控的Prometueus,2017年,2018年的时候时序数据库已经发展的非常迅速来,这个在刚才的DB-engines网站数据和Gartner给出的战略技术趋势信息是非常吻合的。
那么在2020年,Apache开源社区又出现了时序数据库的黑马 ApacheIoTDB,将来还会有哪些时序数据库产品呢?我们让时间来揭晓。
那么,在这里,抛出一个问题,就是:“时序数据库难道不能直接存储到关系数据库吗?”为啥要造出很多时序数据库,时序数据库和关系数据库又有怎样的本质区别呢?其实数据存到哪里合适,还是要看数据本身的特点,以及数据处理的需求。
面对IoT领域,时序数据有很多的数据