高淑杰,田建艳,王 芳(太原理工大学 信息工程学院,山西 太原030024)风速的随机性和间歇性等特点使得目前风电场参数预测模型存在较大的预测误差,对此提出了采用马尔科夫链(MC)方法对模型的预测误差进行修正。
分别求出参数的实际值与模型预测值之间的误差序列,利用模糊C-均值聚类算法对其进行状态划分;根据各误差状态计算出MC状态转移概率矩阵,进而计算模型预测误差修正值,最终得到精度较高的预测值。
采用MC方法分别对广义回归神经网络(GRNN)模型、T-S模糊神经网络模型以及Elman神经网络模型的预测误差进行修正,并应用MC修正后的3种模型对山西某风电场测风塔不同步长风速进行预测仿真实验研究,分析讨论了MC对各预测模型误差的修正效果。
仿真结果表明,所提出的误差修正方法能够有效提高测风塔风速预测精度,为预测模型的误差修正提供了一种有效的实用的方法。
误差修正;马尔科夫链;预测模型;风速预测TP183文献标识码:A10.16157/j.issn.0258-7998.2016.07.029中文引用格式:高淑杰,田建艳,王芳. 基于MC的风电场参数预测模型的误差修正[J].电子技术应用,2016,42(7):114-118.英文引用格式:Gao Shujie,Tian Jianyan,Wang Fang. Error correction of parameter forecasting model of wind farm based on Markov Chain[J].Application of Electronic Technique,2016,42(7):114-118.0 引言对风电场风速进行实时、准确、可靠的预测,不但是风电功率预测的基础,而且对风电场规划设计具有重要意义。
目前已提出多种预测模型,但由于风速的随机性和间歇性,使得预测方法都有其不同的适用条件和缺陷,因此寻求准确的风速预测方法具有十分重要的现实意义。
尹东阳[1]等人利用Elman神经网络预测未来10 min风速,其误差指标MAPE达到12.73%。
朱亚[2]等人利用GRNN模型对冬季和夏季未来30 min的风速分别进行预测,MAPE分别达到39.76%、27.26%,远远超出了风速预测精度要求。
为了提高风速预测精度,相关学者做出了大量研究,分别从风速影响因素、风速预测模型的参数优化以及实时风速数据等角度进行改进。
但是无论上述哪一种方法带来的不确定性都会引起较大的预测误差。
为此,本文从误差修正的角度出发,采用马尔科夫链(Markov Chain,MC)对风速模型的预测值进行修正。
其基本思路是:分别求出参数的实际值与模型预测值之间的误差序列,利用模糊C-均值聚类对其进行状态划分;根据各误差状态计算出MC状态转移概率矩阵,计算预测误差修正模型的预测值,最终得到精度较高的预测值。
1 基于马尔科夫链的风速预测误差修正由于状态划分不准确对修正结果造成很大影响,而MC状态划分又没有统一的方法。
为避免均值-方差状态划分方法人为因素的影响,采用模糊C-均值聚类算法对历史误差序列进行状态划分,并将属于每一类的边界值作为状态划分标准;为了综合考虑各个状态概率对预测结果的影响,将规范化的残差序列的自相关系数作为状态概率权重[3];为综合考虑最大概率以及其他概率的影响,定义级别特征值,并利用其判断当前时刻风速误差所处状态[4]。
采用MC对风速预测误差进行修正的具体步骤如下:(1)计算风速预测模型的历史预测误差ei:式中,Mij为状态i经过k步转移到状态j的次数;Mi为状态j出现的次数。
(5)求取第N,N-1,…,N-k+1个历史时刻风速预测误差所属状态E1,E2,...,Ek,依据状态转移矩阵得到这k个历史误差转移到第N+1时刻预测误差状态的概率,即状态计算矩阵Q:2 基于MC修正的风速预测模型2.1 数据