俄罗斯 Russia量子点用于医学与生物技术 俄数学家首获莉拉瓦蒂大奖量子点是十亿分之一米大小的半导体晶体,由数千个原子组成。
它能够在很宽的光带内吸收光并在很窄的波长范围内发射光,波长范围取决于纳米晶体的尺寸,同时量子点以严格定义的颜色发光。
量子点的这些特性使其几乎成为生物对象的超灵敏多色配准以及医学诊断的理想手段。
然而,大多量子点含有重金属成分,并且通常只在有毒有机溶剂中稳定,这限制了它们在生物学和医学中的使用。
俄萨拉托夫国家研究型大学研制出稳定的量子点外壳,使其能够安全地用于诊断癌症和控制药物剂量。
俄罗斯卫星通讯社发此外,俄数学家首获莉拉瓦蒂大奖。
2022年7月5日,国际数学联盟(IMU)在芬兰赫尔辛基阿尔托大学公布了今年的利拉瓦蒂奖获得者,其中包括俄罗斯科学院数学研究所数学普及与推广实验室主任尼古拉·安德列夫教授。
这也是俄罗斯数学家首次获利拉瓦蒂大奖。
德国 Germany中微子质量上限又有新纪录 量子计算多技术路线齐发力2022年德国最重要的科学发现之一是卡尔斯鲁厄理工学院的国际氚中微子实验(KATRIN)获得了中微子质量的新上限:0.8eV(电子伏特),首次将中微子的质量推向亚电子伏特级,打破了中微子物理学中与粒子物理学和宇宙学相关的一个重要“界限”——1eV。
这将有助于发现超越标准模型的新物理定律。
量子技术方面,为了拥有一台“德国制造”的强大量子计算机,德国在多条技术路线上齐头并进。
例如,于利希研究中心与加拿大量子计算领先供应商D-Wave Systems合作,于2022年1月建成超过5000量子位的量子退火装置,这是欧洲首台实体商用量子退火计算系统。
4月,于利希研究中心在拓扑量子计算方面取得重要进展,首次成功将拓扑绝缘体集成到传统的超导量子比特中。
此外,莱布尼茨计算中心与芬兰IQM公司合作,正在研发20个量子比特的量子计算机,并计划将其集成到一个超级计算机中。
德国航空航天中心与初创公司QuiX Quantum合作,正在开发原型光子量子计算机。
德国还开发出首个可编程光学量子存储器。
德国和奥地利合作,研发出容错量子计算的基本构建模块,首次成功地实现了对两个逻辑量子位的一组计算操作。
在核聚变反应研究方面,德国的实验性仿星器受控核聚变装置(Wendelstein 7-X)进入连续运行的新实验阶段,预期目标是产生最长达30分钟的等离子体脉冲,温度达5000万℃。
日本 Japan超低温与粒子研究成果迭出 量子计算机开发获重要突破诺贝尔物理学奖获得者天野弘领导的一个研究小组成功对深紫外激光二极管(波长低至UV-C区)进行了世界上第一个室温连续波激光发射,代表这项技术朝着广泛应用迈出了关键一步。
日本科学家创造出了首个由准粒子构成的玻色—爱因斯坦凝聚态(BEC),这一成果将对包括量子计算在内的量子技术的发展产生重大影响。
日本理化学研究所科学家首次在基于硅的三量子位量子计算系统内演示了纠错,向大规模量子计算迈出了重要一步,也为实现实用型量子计算机奠定了基础。
日本国立自然科学研究院分子科学研究所(IMS)科学家使用光镊捕获两个冷却到接近绝对零度(-273.15℃,是所有原子停止运动的假设温度)且仅相隔一微米的原子,然后用仅发光10皮秒(1皮秒为万亿分之一秒)的特殊激光束操纵原子,成功执行了世界上最快的双量子位门,其运行时间仅为6.5纳秒(1纳秒为十亿分之一秒)。
该成果有望催生全新的量子计算机硬件,突破目前正在开发的超导和离子阱量子计算机的限制。
横滨国立大学研究人员找到了一种可精确控制量子比特方法,这一进展是朝着更大规模量子计算迈出的一步。
世界上最快的双量子位门概念图。
图片