项目示意图中国电力科学研究院有限公司(以下简称中国电科院)是国家电网有限公司直属科研单位,成立于1951年,重点开展电网共性和基础性关键技术研发、试验检测和技术标准制定,并为国家电网有限公司提供全面的技术支撑服务。
建院以来,中国电科院承担各类国家和政府科技计划项目400余项,逐步形成了世界上功能最完整、试验能力最强、技术水平最高的特高压、大电网试验研究体系,在特高压交直流输变电、大电网控制、新能源发电并网、智能电网等领域取得一批创新成果。
累计获得国家级科技奖励94项,拥有有效专利3000余项,出版科技专著400余部,发表科技论文7000余篇;2010年至今,获批发布国际标准10项,国家标准144项,行业标准370项,团体标准45项,为我国电力科技进步和电力工业的创新发展作出了重要贡献。
党的十九大以来,科技创新地位和作用更加凸显。
十九大报告规划了建设世界科技强国的宏伟蓝图,把加快建设创新型国家作为现代化建设全局的战略举措。
为贯彻国家要求,国家电网公司提出要坚持创新驱动发展,大力实施科技强企战略,瞄准世界能源电力科技前沿和企业实际问题,敢为人先、敢于突破,抢占科技制高点,引领电网创新发展。
作为国家电网有限公司直属科研单位,中国电科院提出了分“三步走”建设具有卓越竞争力的世界一流电力科研机构的新时代战略目标,通过聚焦重点发展方向,全面提升科技创新能力和支撑服务能力,努力建设成为电网重大基础理论创新的诞生地、高端电力科技的策源地、世界顶尖发明创造的聚集地。
在国家科技战略引领下,中国电科院提出一系列创新管理举措,科技研发效率进一步提升。
一是强化科研顶层设计,使创新资源更加集中。
初步形成“顶层设计先行、指南申报落地、战略规划兼容”的研发策划模式,依托顶层设计凝练聚焦技术新方向,培育未来业务增长点,并在重大战略方向的遴选上支撑顶层设计,促进科技资源进一步向核心技术方向聚集,在资源有限的情况下,增强了科研投入的系统性、全局性和协同性。
通过科研顶层设计,凝练出了50个重点研究方向、44项核心技术、8个中长期战略性科研方向,基本确立了中国电科院未来若干年的核心重点技术方向。
二是实施研发组织优化,使综合优势更加凸显。
初步建立“总体设计、集中攻关、分散实施”的跨专业联合攻关机制,形成院内单位互为补充、相互促进、互通有无的协同攻关体系。
通过优化研发组织模式,五年来先后攻克了电力系统全过程动态仿真、特高压变电设备状态预警、大规模新能源发电并网、配电网自愈控制、规模化储能系统集成等一大批关键技术难题。
随着国家科技计划改革方案逐步实施,国家有关部门于2016年首次采用国家重点研发计划专项形式组织项目申报。
在国资委、国家电网有限公司的大力支持和有序组织下,中国电科院积极参与各相关专项申报,在2016年至2018年期间共计参与了12个专项、73个项目的申报,截至目前已有49个项目(15项牵头、34项配合)获批立项,特别是在智能电网领域,已连续三年成为承担项目最多的单位。
开发“电网友好型”风电机组,助力“新时代”电网稳定运行——大容量风电机组电网友好型控制技术我国是全球风电规模最大、发展最快的国家,2017年我国新增风电装机容量1503万千瓦,累计装机达1.64亿千瓦,均为世界第一。
预计到2050年末,全国风电装机将突破10亿千瓦。
随着风电并网比例不断攀升,局部区域风电穿透率已超过100%,具备高比例风力发电的“新时代”电力系统正逐渐形成。
跟以同步发电机为主导的传统电力系统相比,“新时代”电力系统最大的特征在于风电带来的高比例电力电子装备接入,随着风电容量在电力系统中比重不断加大,电力系统惯量不足,频率稳定问题凸显;风电抗扰性低,在系统电压/频率波动时易大规模脱网引发连锁故障;产生的多形态低频和次/超同步振荡机理尚未探明,振荡事故频发。
系统呈现弱惯性、弱电气阻尼以及弱电压支撑的运行特性,安全稳定运行面临重大挑战。
据国家重点研发计划项目“大容量风电机组电网友好型控制技术”负责人、中国电科院新能源研究中心副主任秦世耀介绍,本项目按照“理论基础—关键技术—试验检测—工程示范”的主线开展研究,并设置了5个课题,攻克一个科学问题,突破四项关键技术:风电机组宽频动态特性及其多控制环节的耦合作用机理电网特定条件下双馈/直驱风电机组并网可能呈现的宽频振荡特性涉及风电机组多物理控制动态环节和主动支撑控制动态环节的耦合,目前仍未揭示此相互作用关系。
采用时域振荡模态,分析风电机组宽频动态的振荡特征及各控制环节间动态和暂态耦合作用机制,是实现大容量风电机组友好型并网控制优化的关键科学问题和理论基础。
研究双馈/直驱风电机组各物理控制环节动态特性和风电系统振荡模态与物理控制环节耦合关系至关重要。
通过建立风电机组宽频动态模型,提出风电机组机电耦合扭振和次/超同步振荡的降阶解耦模型,为风电电网友好型控制的关键技术突破奠定基础。
计及能量约束与应力的主动频率支撑优化控制技术传统风电机组运行过程主要考虑自身运行安全与发电量,对电网频率并不具有支撑能力,降低了电网整体有效惯量,致使电网频率稳定性下降,同时风电机组缺乏一次调频能力,减小了系统的后备支撑。
而风电机组参与调频对机组控制系统提出了新的挑战,包括频率支撑能量